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Methods of mathematical statistics are used to generalize results obtained 
instudying the interchannel mixing of a heat-transfer agent in the inter- 
tube space of a heat exchanger with twisted tubes. 

Intensification of heat and mass transfer by twisting the flow in bundles of twisted 
tubes makes it possible to achieve the maximum effect in high-temperature heat exchangers, 
since this method provides for intensive smoothing out of possible temperature variations 
in the cross section of the bundle [1-3]. Interchannel mixing of the heat carrier in bun- 
dles of twisted tubes was studied in a number of articles [i-3], and it was noted that the 
effective diffusion coefficient describing the intensity of lateral heat and mass transfer 
in such bundles exceeds the coefficients of turbulent diffusion along the axis of a round 
tube by more than an order of magnitude. Articles [1-3] deal with the effect of various 
parameters on this coefficient which, in dimensionless form can be presented as 

K = Dt/(udJ. (1) 

It was demonstrated in [1-3] that the numerical value of K might be dependent on the experi- 
mental research method. Thus, when using the heat-diffusion method based on the Lagrange 
description of a turbulent field in examining the history of the motion of an individual 
particle emitted from a point source, we find that K is almost twice as large as in the 
case in which we make use of the method of diffusion from linear heat sources. Moreover, 
it was demonstrated in the cited references that when the length of the twisted-tube bundle 
is 

l i> li = 8.019deFr$ '2e6, (2)  

where s is the length of the initial section required to obtain a stabilized temperature 
profile for the core of the flow, and thus to obtain a stabilized value for Kst which is 
the average value of K over the entire region of flow within the bundle, this average value 
is determined as part of the Euler description of the turbulent flow by comparison of the 
experimentally measured and theoretically derived temperature fields at the outlet section 
of the bundle, and this value is virtually equal to the stabilized value of the coefficient 
Kst. Since condition (2) in [i, 2] is satisfied, the authors of these articles noticed no 
effect of the level of entry flow turbulence (e = 1-6%) on K, and the experimental data of 
the various authors were generalized by the following relationships: 

for Re = 3.4.10~-i0 4 

K~t= 3.1623 [0.136FrT ~ + 10Fr~ ~ (m-- 0.46)1 Re -~ 12s, 

for Re e 10 4 

At the same time, 
ences for twisted-tube bundles 1.5 m in length, although this deviation falls within the lim- 
its of experimental error. This deviation is greater for bundles with small Fr s numbers 
[2]. The Fr s number is defined by 

(3) 

/~t = 0.136 Fr~ ~ + 10Fr~~ (4) 

a noticeable deviation from (3) and (4) is observed in the cited refer- 

Fr s = s2/(dcle), (5) 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 55, No. 5, pp. 709-715, November, 
1988. Original article submitted July 16, 1987. 

0022-0841/88/5505-1195512.50 �9 1989 Plenum Publishing Corporation 1195 



/3 /7 r>,p 
,, -,. kl)  ~p 

/0 

"~/7 iz+['' 
I I  IZ ?~ \ ,  ~ "<"" 

/3 ~ ~ ' - - - - . - - - - ~ - - - - - - - ~  o 

View A 

8 ~ / 2 3 

1516 ". ~4 

~ �9 "/7 

Fig. i. Schematic of the experimental section: i) twisted 
tubes; 2) housing; 3) collector; 4) static pressure sampling 
valve; 5) static pressure sensors; 6) sealing gasket; 7) 
AI203 electroinsulating coating; 8) outlet current lead; 
9) inlet assembly; i0) conical flow splitter; ii) equalizing 
grids; 12) hermetically sealed inlet; 13) power leads; 14) 
thermally insulated jacket; 15) temperature and velocity 
heat sensors; 16) coordinating mechanism; 17) thermoelectric 
twisted-tube wall temperature sensors. 

which is derived by using a model of quasisolid rotation [i], and which characterizes the 
intensity of heat-carrier flow twisting in the bundle. The nature of this deviation of K 
from Kst can be explained by the heat loss through the housing of the heat exchanger which 
in [2] has no thermal insulation. These losses increase with increase in mixing intensity 
(for the smaller values of the Fr s number). 

It therefore becomes necessary to conduct more precise experiments on interchannel mix- 
ing in twisted-tube bundles of various lengths, with minimum heat losses through the heat- 
exchanger housing wall, to refine the dependence of the coefficient K on the intensity of 
flow twisting (on the Fr s number) for twisted-tube bundles exhibiting that heat-carrier por- 
osity m = 0.501-0.544 most frequently encountered in actual practice. 

The investigation of the mixing process in twisted-tube bundles was conducted on an 
experimental installation which is described in general outline in [i]. The experimental 
section housing the bundle is shown in Fig. i. The housing of the 37-tube bundle has a 
horizontal release and is coated on the inside surface with aluminum oxide so as to electri- 
cally insulate the bundle from the housing. The outer surface of the housing is thermally 
insulated with an asbestos layer and a sheet of fiberglass, which virtually eliminates any 
loss of heat to the ambient medium. Air is used as the heat-transfer agent, and this air 
is fed into the experimental set-up through a system of equalizing grids designed to pro- 
duce a uniform velocity field at the inlet to the bundle. Alternating current is used to 
heat the tubes. It was thus possible to simulate both axisymmetric and asymmetric fields 
of energy release in the bundle, heating individual groups of tubes. The temperature and 
velocity fields were measured at the outlet from the tubes by means of a thermocouple and 
a total-head sensor mounted on the coordinating mechanism. In addition, the escaping air 
flow was measured, as were the twisted-tube wall temperatures and the pressure drops across 
various sections of the bundle. The twisted tubes were 750 and 1000 mm in length, the 
maximum dimension of the oval profile was d = 12.33 man, the wall was 0.2 mm thick, and the 
relative pitch of the twist was s/d = 6.5, 12.3, 12.9, and 26. Table 1 shows the geometric 
characteristics of the twisted-tube bundles. 

TABLE i. 
dies 

Geometric Characteristics of the Tube Bun- 

Frs d. lO 8, m de. lOa , m s/d e l /d  e m 

63,6 
232 
286 

1052 

12,30 
12,32 
12,16 
12,33 

8,15 
8,06 
7,11 
7,88 

9,82 
18,86 
22,11 
40,6! 

92,02 
93,05 

140,7 
95,18 

0,544 
0,539 
0,501 
0,527 

1196 



T/Tav / K. tO z 

/,z /0 ~ t \  .3 �9 -- z 

Fig. 2 Fig. 3 

Fig. 2. Comparison of experimental dimensionless tempera- 
ture fields with calculation results for a bundle with Fr s 
286 and s = 1.0 m: 1-4) calculation with K = 0.03, 0.045, 
0.06, and 0.075, respectively; 5) experimental data. 

Fig. 3. Coefficient K as a function of Frs: i, 2) experi- 
mental data for bundles with Fr s = 286 and Z = 1 m; Fr s = 
63.6, 232, 1052, and s = 0.75 m, respectively; 3) relation- 
ship (20); 4) relationship (4). 

For purposes of determining the coefficient K, the experimentally measured temperature 
fields of the heating agent were compared with the theoretically calculated fields. The 
latter were calculated by solution of a system of equation s describing the flow of a homog- 
enized medium in x, r, 9 coordinates which replaced the real flow in the bundle of twisted 
tubes [i, 3]: 

Ou Op ~ 1 0 9rDt Ou ~ 1 0 Ou ) _ _ ~ _ _ ,  
9u Ox dx r Or -~r J + r z 09 9Dr 09 ] 2d e (6) 

OTox 1 - - m  1 0 ( OT ) 1 0 oct 07" I q~ - -  ~ - -  - -  9 r % , D ~  -~ - -  ( D t  , ( 7 )  pucv 
m r Or - - 0 - ~  r 2 Oq~ \ '  ' 09  ,I 

2~ r h  

O --  m [ i' 9 u rd rd9 '  (8) 
b "0 

p = 9RT, (9) 

with the following boundary conditions: 

u(O, r, 9)=Uin, T(O, r, 9 )=  ~n ,  p(O)=Pi n, (10) 

@u(x, r, T! i = O, aT(x, r, 9)lr=rh = O, (11) 
Or /r=rh Of 

u(x, r, 9) =u(x ,  r, ~+2~) ,  T(x, r, 9) = T(x, r, 9 +  2a). (12) 

The system of  equa t ions  (6 ) - (9 )  wi th  boundary c o n d i t i o n s  (10) - (12)  i s  so lved  numeri-  
c a l l y ,  and f o r  i t s  c l o s u r e  we use the  e x p e r i m e n t a l l y  de r ived  c o e f f i c i e n t  K from (1) [1].  
The method of  s o l v i n g  a system of  equa t ions  such as ( 6 ) - (9 )  i s  examined in [1] .  

Figure 2 shows a typical experimentally measured temperature field for a twisted-tube 
bundle with a relative twist pitch of s/d = 12.3 and length s = 1.0 m, where the six central 
tubes are heated and these surround the unheated tube along the axis of the bundle; said 
temperature field is compared to the theoretically calculated temperature fields by solving 
the system of equations (6)-(9) for various values of the effective coefficient of diffu- 
sion. The methods of mathematical statistics were used to determine K, as was a modified 
method of least squares [i, 2]. The values of the coefficient K derived in this manner for 
various values of Fr s, with bundle lengths of s = 0.75 and 1 m and a porosity of m = 0.501- 
0.544 are shown in Table 2. Here we also find the results from the determination of the 
coefficient K both for the axisymmetric and asymmetric nonuniformities in heat supply for 
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TABLE 2. Parameters of the Experiment 

Num- J xRled, 4 berof I qs'l~ 
Fr$ tubes [ ~- MW/rn ~- I heated I 

1 

63,6 6 i 1,52 
63,6 7 1,52 
63,6 11" 1,54 
63,6 1~* 1,55 

232 1,65 
232 9* 1,65 

2,22 
1,85 
2,14 
2,27 
1,93 
2,04 

K.]0 2 F r s  
iNure- [ 
bet of L ~e• 

I heated }• 10-~ 
]tubes /" 

I0,6 
10,9 
12,3 
12,3 
4,8 
3,9 

232 
286 
286 

1052 
1052 
1052 
1052 

6 
9* 
9* 

18 
30 

1,63 
1,78 
1,79 
1,72 
1,75 
1,23 
1,22 

qs  ' 10 2 

MW/m z 

2,08 
3,99 
3,70 
2,12 
1,98 
1,23 
0,93 

K. 10 ~ 

4,9 
4,8 
4,4 
2,8 
2,8 
2,5 
2,6 

*Nonaxisymmetric location of heating zone in lateral 
cross section. 

various numbers of heated twisted tubes. Here, all of the data for K presented in the table 
pertain to the turbulent flow region with Re = (1.22-1.79).104 , where in accordance with 
[i, 2] no effect of the Re number on the effective diffusion coefficient is observed. Ac- 
cording to [i] the location of the heating zone also has virtually no effect on the coeffi- 
cient K in the flow region separated from the housing wall through a distance (l-l.5)d. 
Therefore, bearing in mind that the porosity m for the subject bundles varied insignificant- 
ly, we find that the entire compilation of experimental data pertaining to K, as shown in 
Table 2, can be utilized to derive the relationship between this coefficient and the twist- 
ing intensity of the twisted tubes (i.e., the Fr s number), by employing the methods of mathe- 
matical statistics. 

The coefficient K as a function of Fr s can be shown in the form of a quadratic polyno- 
mial in logarithmic coordinates: 

lg K = A0 + Allg Frs + A2 (lg Fr s )z. (13) 

S e l e c t i o n  o f  t h e  q u a d r a t i c  p o l y n o m i a l  (13) t o  d e s c r i b e  p r o c e s s e s  o f  h e a t  and mass t r a n s f e r  
in  a bundle  o f  t w i s t e d  t u b e s ,  which ,  a f t e r  s imp le  t r a n s f o r m a t i o n s ,  l e a d s  t o  t h e  approxima-  
t i n g  relationship 

K = 10A"Fr~ '+Adg Frs., (14) 

is associated with the complex nature of the flow in such bundles and the existence of ad- 
ditional transfer mechanisms, as opposed to straight tubes for which linear relationships 
are used to describe similar processes. For purposes of describing data pertaining to mix- 
ing in a bundle of twisted tubes and to demonstrate the validity of this selection, let us 
also examine a linear relationship of the form 

lgK = B0 -k Bllg Frs. (15) 

The c o e f f i c i e n t s  A0, A1, and A 2 in  (13)  were c a l c u l a t e d  w i t h  a computer  by t h e  method of  
l e a s t  s q u a r e s  [4] .  To e s t i m a t e  t h e  ag reemen t  o f  t h e  a p p r o x i m a t i n g  r e l a t i o n s h i p  to  t h e  bu lk  
o f  t h e  e x p e r i m e n t a l  d a t a ,  we employed a c o e f f i c i e n t  o f  m u l t i p l e  c o r r e l a t i o n  [5] :  

R 2 = l - - [ 2  ( ~ e x -  Yi)Z/i ( ~ e x -  Yex)Z], (16) 
i ~ l  i=I 

where Yiex is the experimental value of the studied parameter; Yi is the calculated value 
m 

according to the approximating relationship; Yex is the average value of the parameter from 
experimental data: 

%x = ~ e x  I n ,  (i7) 
i=l 

where n is the number of experimental data (experimental values of the parameter). To eval- 
uate the advantages of utilizing an approximating relationship of the selected type, (13) 
for example, in comparison to the mean value of the parameter in the studied range of changes 
in the argument, we made use of the Fisher criterion [5]: 

= - (gex.   - -  ( % x - -  / F t<. 
i=l i : 1  i = 1  
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where k is the number of degrees of freedom in the regression equation (the approximating 
relationship). Use of the Fisher criterion to compare dispersion of the experimental data 
relative to an approximating relationship of the form (13) with an average value (17) re- 
duces primarily to comparison of the tabulated value for Fcr for the assumed significance 
level 0.01 and to the assumption of a "null hypothesis" for the dispersions and, consequent- 
ly, for the equivalence of describing the experimental results with an average value for 
the parameter and for the selected approximating relationship. Moreover, having calculated 
the magnitude of the Fisher criterion F for two different approximating relationships (13) 
and (15), we can evaluate the advantage of either relationship on the basis of the relation- 
ships between the magnitudes of the F criterion. The quantity Fcr is taken from the tables 
in [5] in accordance with the assumed significance level (0.01) and the number of degrees 
of freedom for the dispersion of the experimental data relative to the mean value of Yex " 
(n - I) as well as relative to the approximating relationship (n - q, where q is the number 
of determined coefficients in the relationship). 

To estimate the scattering of the experimental data, we calculate the root-mean-square devi- 
ation a of the experimental values for the parameter Y from relationships (14) and (18): 

n 

i = l  

Here the quantity o, for ease of analysis, was normed to the minimum calculated value of 
the parameter K according to the approximate relationship. Then the experimental data for 
the coefficient K (Table 2) with the quadratic polynomial (13) can be described as a func- 
tion of the Fr s number: 

,~ ~ =-I ,4232~O,I8571gFr  S 
K = lu ,oorrs  , (20)  

for which the quantities o, F, and R 2 are: o <- • F = 225 and R 2 = 0.978. If these 
same experimental data are generalized by linear relationship (15), we derive the expres- 
sion 

K = 0.904Fr~ ~  
, ( 2 i )  

f o r  wh ich  o ~ • F = 197, and R a = 0 . 9 4 7 .  C o m p a r i s o n  o f  t h e  q u a n t i t i e s  o,  F, and R a f o r  
(20 )  and (21 )  d e m o n s t r a t e s  t h e  a d v a n t a g e  o f  a p p r o x i m a t i o n  ( 1 3 ) ,  wh ich  d e s c r i b e s  t h e  e x p e r i -  
m e n t a l  d a t a  w i t h  g r e a t e r  a c c u r a c y  and t o  a g r e a t e r  d e g r e e  c o r r e s p o n d s  t o  t h e  b u l k  o f  t h e  
e x p e r i m e n t a l  d a t a ,  s i n c e  t h e  v a l u e s  o f  F and R a f o r  r e l a t i o n s h i p  (20 )  a r e  g r e a t e r  t h a n  t h e  
v a l u e s  o f  F and R a f o r  r e l a t i o n  ( 2 1 ) .  

R e l a t i o n s h i p  ( 2 0 ) ,  shown in  F i g .  3,  i s  a good g e n e r a l i z a t i o n  o f  t h e  e x p e r i m e n t a l  d a t a  
f o r  t w i s t e d - t u b e  b u n d l e s  o f  v a r i o u s  l e n g t h s  f o r  t h e  r a n g e  o f  p o r o s i t y  m v a r i a t i o n  e n c o m p a s s e d  
by t h e  e x p e r i m e n t .  Fo r  p u r p o s e s  o f  c o m p a r i s o n ,  F i g .  3 shows r e l a t i o n s h i p  (4 )  a t  an a v e r a g e  
v a l u e  f o r  t h e  p o r o s i t y  o f  t h e  t u b e  b u n d l e s  u s e d  in  t h i s  s t u d y  ( s e e  T a b l e  1 ) .  We s e e  t h a t  
t h e  v a l u e s  o f  K, c a l c u l a t e d  by means o f  ( 2 0 ) ,  l i e  a b o v e  t h e  v a l u e s  o f  K d e t e r m i n e d  f rom ( 4 ) ,  
w i t h  p a r t i c u l a r l y  n o t i c e a b l e  d i v e r g e n c e  o b s e r v e d  f o r  t h e  s m a l l  Fr  s numbers  a t  which  t h e  
greatest intensification of the interchannel heat-carrier mixing is observed. This diver- 
gence can be explained by the fact that in this study the housing of the bundle of twisted 
tubes was thermally well insulated and the heat losses from the experimental section were 
negligibly small, which is borne out by the agreement in values of the coefficient K for 
bundles of varying lengths. 

The derived relationship (20) can be recommended for calculation of the coefficient K 
in twisted-tube bundles with varying intensities of flow twisting and with a porosity m = 
0.501-0.544 for Reynolds numbers Re > 104 and bundle lengths s > s The greatest inten- 
sification of the process of interchannel mixing in the subject bundles is observed at small 
Fr s numbers from 63 to 286. Relationship (20) allows us to close the system of equations 
(6)-(9) and thermohydraulically to design a heat exchanger with twisted tubes in which al- 
lowance is made for interchannel mixing. 

NOTATION 

Dt, effective diffusion coefficient; u, velocity; de, equivalent diameter; s length 
of bundle; Frs, criterion characterizing the flow-twisting effect; K, dimensionless effec- 
tive diffusion coefficient; s, twisting pitch of the twisted tubes; d, maximum dimension 
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of oval tube profile; x, r, ~, coordinates; 6, drag coefficient; qv, density of volumetric 
heat release; T, temperature; p, density; Cp, specific heat capacity; p, pressure; R, gas 
constant; c, root-mean-square deviation; F, Fisher criterion; R2,multiple correlation coeffi- 
cient; Re, Reynolds number; m, porosity of the bundle relative to the heat-transfer agent; 
G, mass flow rate of the heat-transfer agent; qs, heat flow density. Subscripts: st, stabi- 
lized; i, initial; h, housing; in, inlet. 
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RADIANT-CONVECTIVE HEAT EXCHANGE IN TURBULENT MOTION 

OF A GAS SUSPENSION WITHIN A TUBE 

F. F. Tsvetkov and V. I. Salokhin UDC 536.242.001.5 

A calculation of the temperature field and radiant and convective components 
of the thermal flux density is performed for combined action of convection 
and radiation in a dusty gaseous medium. 

At present there are available a large number of studies of the process of radiant- 
convective heat exchange [1-4]. However, for the case of flow of a gas suspension in a 
round tube this problem has been considered only in [5, 6]. Many questions such as the 
effect on heat exchange of the direction of the thermal flux, the parameters of the carrier 
gas and particles, and temperature conditions require further study. 

In the general case radiant-convective heat exchange is described by a system of equa- 
tions in which the energy equation is an integral-differential one. Numerical solution of 
the problem is possible only with significant expenditures of machine time, so that develop- 
ment of simple but reliable methods for engineering calculations of the radiant component 
of the thermal flux density on the tube surface during motion of a dusty gas therein is a 
problem of practical value. 

The present study will present a simplified method and results of calculating radiant- 
convective heat exchange for flow of a gas suspension in a circular tube. 

Relying on [7], we will assume that the solid particles found in the gas suspension 
flow are uniformly distributed over the tube section. The gas suspension is considered as 
a quasihomogeneous absorbing and radiating grey medium. Temperature difference between gas 
and particles will be neglected, as well as the effect of these temperatures on convective 
heat exchange. The latter assumption is satisfied well for tubes of small diameter if the 
particle mass flow concentration does not exceed the value two [8]. We will consider the 
flow of the gas suspension in a region far removed from the tube entrance. The tube wall 
is absolutely black. On the wall the boundary condition is qw = const. Following [7], 
we write the energy equation for the gas suspension in the form 

Oh, 1 0 (rq) + %es. (1) 
p , w ~  a----~- - T or 
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